Automorphisms of P-groups of Maximal Class

نویسنده

  • SANDRO MATTAREI
چکیده

Juhász has proved that the automorphism group of a group G of maximal class of order p, with p ≥ 5 and n > p + 1, has order divisible by p. We show that by translating the problem in terms of derivations, the result can be deduced from the case where G is metabelian. Here one can use a general result of Caranti and Scoppola concerning automorphisms of two-generator, nilpotent metabelian groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

On equality of absolute central and class preserving automorphisms of finite $p$-groups

Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...

متن کامل

DETERMINISTIC p-COMPACT GROUPS

We investigate the class of N -determined p-compact groups and the class of p-compact groups with N -determined automorphisms. A p-compact group is said to be N -determined if it is determined up to isomorphism by the normalizer of a maximal torus. The automorphisms of a p-compact group are said to be N -determined if they are determined by their restrictions to this maximal torus normalizer.

متن کامل

Splittings and automorphisms of relatively hyperbolic groups

We study automorphisms of a relatively hyperbolic group G. When G is oneended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GLn(Z) fixing certain basis elements. When more general parabolic groups are allowed, these ...

متن کامل

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005